Hey2 acts upstream of Notch in hematopoietic stem cell specification in zebrafish embryos.
نویسندگان
چکیده
Hematopoietic stem cells (HSCs) are essential for homeostasis and injury-induced regeneration of the vertebrate blood system. Although HSC transplantations constitute the most common type of stem cell therapy applied in the clinic, we know relatively little about the molecular programming of HSCs during vertebrate embryogenesis. In vertebrate embryos, HSCs form in close association with the ventral wall of the dorsal aorta. We have shown previously that in zebrafish, HSC formation depends on the presence of a signaling cascade that involves Hedgehog, vascular endothelial growth factor, and Notch signaling. Here, we reveal that Hey2, a hairy/enhancer-of-split-related basic helix-loop-helix transcription factor often believed to act downstream of Notch, is also required for HSC formation. In dorsal aorta progenitors, Hey2 expression is induced downstream of cloche and the transcription factor Scl/Tal1, and is maintained by Hedgehog and vascular endothelial growth factor signaling. Whereas knockdown of Hey2 expression results in a loss of Notch receptor expression in dorsal aorta angioblasts, activation of Notch signaling in hey2 morphants rescues HSC formation in zebrafish embryos. These results establish an essential role for Hey2 upstream of Notch in HSC formation.
منابع مشابه
HEMATOPOIESIS AND STEM CELLS A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence
Defining the genetic pathways essential for hematopoietic stem cell (HSC) development remains a fundamental goal impacting stem cell biology and regenerative medicine. To genetically dissect HSC emergence in the aorta-gonadmesonephros (AGM) region, we screened a collection of insertional zebrafish mutant lines for expression of the HSC marker, c-myb. Nine essential genes were identified, which ...
متن کاملA genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence.
Defining the genetic pathways essential for hematopoietic stem cell (HSC) development remains a fundamental goal impacting stem cell biology and regenerative medicine. To genetically dissect HSC emergence in the aorta-gonad-mesonephros (AGM) region, we screened a collection of insertional zebrafish mutant lines for expression of the HSC marker, c-myb. Nine essential genes were identified, which...
متن کاملNotch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium.
Hematopoietic and vascular development share many common features, including cell surface markers and sites of origin. Recent lineage-tracing studies have established that definitive hematopoietic stem and progenitor cells arise from vascular endothelial-cadherin(+) hemogenic endothelial cells of the aorta-gonad-mesonephros region, but the genetic programs underlying the specification of hemoge...
متن کاملDev117275 1..10
SoxF family members have been linked to arterio-venous specification events and human pathological conditions, but in contrast to Sox17 and Sox18, a detailed in vivo analysis of a Sox7 mutant model is still lacking. In this studywe generated zebrafish sox7 mutants to understand the role of Sox7 during vascular development. By in vivo imaging of transgenic zebrafish lines we show that sox7 mutan...
متن کاملThe zebrafish reveals dependence of the mast cell lineage on Notch signaling in vivo.
We used the opportunities afforded by the zebrafish to determine upstream pathways regulating mast cell development in vivo and identify their cellular origin. Colocalization studies demonstrated zebrafish notch receptor expression in cells expressing carboxypeptidase A5 (cpa5), a zebrafish mast cell-specific marker. Inhibition of the Notch pathway resulted in decreased cpa5 expression in mindb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 116 12 شماره
صفحات -
تاریخ انتشار 2010